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It is shown how to add dissipation to the "resonant" nonlinear oscillators 
studied by Ford and Lunsford in such a way that the system remains on the 
energy surface. In the dissipative system, the energy surface is stable in 
some directions and neutrally stable in other directions. The dissipative 
oscillators are special cases of the general type investigated by Sherman and 
McLaughlin. The connection between resonant conservative nonlinear 
oscillators and dissipative oscillators may make it easier to extend the 
theorem of Arnol'd to dissipative systems. 
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1. I N T R O D U C T I O N  

F o r d  and Lunsford  (1) have s tudied the nonl inear  osci l lators descr ibed by 

N 

H = ~ .  �89 2 + a ~ )  + y(V3 + V4 + "") (1) 
k = l  

for  a cer ta in  " r e s o n a n t "  form of  V3 and oJ k and V, = 0, n > 3. Hence V ,  is 
a po lynomia l  o f  o rder  n in the Pk and Qk- In  Eq. (1), the ~ok and  9' are real,  
posi t ive constants .  The resonant  Hami l ton ians  are most  easily given in act ion-  

angle  variables.  

N 

n = ~, kcoJtc ~- ~ ~ iklmJIn~ll2jt nll/2JInm['2 
h: = 1 (Inkl + Ind + Inn, I) = 3 

• cos(n~r + nl~bz + n,,~bm) (2) 

Qk = (2J~) 1/2 cos ~bk (3) 

Pk = --(2Jk)  1/2 sin r (4) 
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The sum in Eq. (2) is restricted to those terms having zero Poisson bracket 
with the first term. Arnol'd (2~ has shown rigorously that nonresonant 
oscillators are near-integrable for sufficiently small energies. The numerical 
work of Ref. 1 strongly suggests that the converse is also true i.e., that the 
resonant systems have widespread stochasticity for arbitrarily small energies. 

Sherman and McLaughlin (3) have studied the model of nonlinearly 
coupled normal modes defined as follows: 

dA~/dt = - ito~A~ + i ~ ~'m~AmA,-m (5) 

A_,  = A,* (6) 

The factor of i is inserted before the summation sign in Eq. (5) for convenience. 
The A, can be thought of as representing the spectral coefficients in the 
expansion of some physical field obeying a quadratically nonlinear PDE in 
the eigenfunctions of  the linearized PDE. The parameters oJ, are the eigen- 
frequencies of the linearized problem, which are complex in general. I f  co, ~ 
(i.e., the imaginary part of con) is positive, then infinitesimal values of A, will 
increase exponentially (assuming that the nonlinear terms are negligible). 

In the calculations reported in Ref. 3, all A,, n > 4, were dropped and 
the 7mn were set equal to unity. The following dispersion relation was chosen 
for the real part of the w~: 

~o," = 0.6n + 0.12n 2 (7) 

It was found that, when col ~ and coo ~ are negative and oJ2 ~, ~o3 ~, and o~a ~ are 
sufficiently positive, stochastic solutions exist. The above choice of dispersion 
relation for o~,' was made in order to produce power spectra similar to those 
seen in the Couette flow experiments of Swinney et al. ~ In unreported cal- 
culations, the authors of Ref. 3 found that in the linear dispersion case, 
oJ~ ' = no~l ~, the system was strictly periodic for the range of co, * studied 
(between zero and unity). Since the " resonant"  system of Ref. 1 is also 
nondispersive, this result is somewhat puzzling at first. However, the model 
studied in Ref. 1 was conservative (co~ real). Thus, dissipation appears to 
take the system off resonance in this case. There is some uncertainty in this 
conclusion, since the nonlinearity studied in Ref. 3 was not of Hamiltonian 
form. 

2, C O N N E C T I N G  T R A N S F O R M A T I O N  

In order to facilitate comparison, let us start with the specific Hamiltonian 
studied by Ford and Lunsford: 

H = J~ + 2J2 + 3J3 + ~[aJ~J~ ~2 cos(2r - ~2) 

+/3(sls~r~)l,~ cos(~l + ~ - ~ ) ]  (8) 
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The equation of motion for  J ,  and r can be obtained by writing out 
Hamilton's equations. The system in Eq. (8) is equivalent to the following 
system of  coupled modes: 

dA~/dt = - i % A z  + iF(Z~A~*A2 + [3A2*As) (9) 

dA2ldt = --ioJ2Az + iI'(~A~ 2 + [3A3Al*) (10) 

dA3/dt = - iw3A8 + iI'flA~A2 (11) 

oJ 1 = 1, ~o 2 = 2, w3 = 3 (12) 

A, = ~ / Z  e - '~ (13) 

r = - ~  (14) 

If  A4 and A0 are dropped from the system studied in Ref. 3, ~ and/3 are set 
equal to unity, and w~, co z, and c% are allowed to be complex, Eqs. (9)-(11) 
are equivalent to the system of Ref. 3 except for the factor of two in the first 
nonlinear term of Eq. (9). Thus, the nonlinearity of  the model in Ref. 3 is 
not of Hamiltonian form. Of course, the model of Ref. 3 should really be 
compared to a four-dimensional resonant oscillator: 

H = Ho + 4J4 + iF[,J2a/'~4 cos(r - 2r + 

+ ~(J1J, J ,)  1~ cos(r - r - r (15) 

In Eq. (15), Ho is the Hamiltonian given in Eq. (8). In mode variables, this 
system can be written as 

dA1/dt = -ioJiA1 + iU(2~AI*A2 + t~Az*A3 + 3A3*A,) (16) 

dAz/dt = -i~o2A2 + iI'(~At 2 + M3~/t* + 2~A2*A~) (17) 

aA3/at = -io,3A3 + ir(/3A~A2 + ~AI*A,) (18) 

dA~/dt = - ioJ ,A ,  + ir ( ,Az  2 + 8A~A~) (19) 

Equations (16)-(19) differ from the system integrated in Ref. 3 even if 
c~ = /3  = 3 = ~ = 1, because of the factors of two in the nonlinear terms in 
Eqs. (16) and (17). The mode A0 has been dropped for brevity. 

I f  the oJ, are chosen to be real and the terms involving A0 are dropped, 
the system studied in Ref. 3 is conservative. Even though the system is not 
of  Hamiltonian form, it seems likely that it would have stochastic solutions 
for arbitrarily small energies because vanishing denominators ~2) still occur 
in the lowest order terms in a perturbation expansion in the nonlinearity. 
This point will be treated in a future publication. 
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3. A N E W  M O D E L  

It is possible to modify the resonant system in such a way that, when 
dissipation is added to the system (i.e., when the oJ~ are allowed to become 
complex), the system point stays on the energy surface. Furthermore, the 
energy surface is at least neutrally stable. In three dimensions, the generaliza- 
tion is as follows: 

dA1/dt = - i to lA1  + iF(2aAz*A2 + [3A2*A3) - ~cXAI (20) 

dA2/dt = -ito2A2 + iP(aAz 2 + flAaAI*) - ~cXA2 (21) 

dAa/dt = - i t % A a  + irflA1A2 - KXAa (22) 

X = [A~] 2 + 2IA2I 2 + 3IAa[ 2 (23) 

w ~ = n +  i~ (24) 

~:, x >/ 0 (25) 

The generalization to higher dimensions is obvious. Equations (20)-(24) can 
be combined to yield the following two relations: 

dx/dt = 2(~x - ~x 2) (26) 

dy/dt = (~ - ,cx)y (27) 

y =- ~A12A2 * + c.c. + flA1A2Aa* + c.c. (28) 

In Eq. (28), the symbol c.c. means complex conjugate. Taking ~ and ~ to be 
positive, Eq. (26) has an attracting fixed point Xf~: 

Xfp = ~:[K (29) 

Thus, for appropriate choices of ~: and x, the set of points corresponding to a 
given value of X = J~ + 2J2 + 3J3 remains intact and attracts nearby 
points. In this sense, the energy surface becomes an attractor in the dissipa- 
tive system. Furthermore, when X = Xfp, Eq. (27) shows that the quantity y 
is conserved. In action-angle variables, it is seen that x and y correspond to 
the two conserved parts of the resonant Hamiltonian: 

x = J~ + 2J2 + 3Ja (30) 

y = 2 [~J~a /Ncos (2 r  - r + ~(.r~.r~J3)l~ cos(r + ~ - ~ )1  ( 3 0  

Thus, for an appropriate choice of ~:/K, the two conserved energies are 
undisturbed by the addition of dissipation. The system point remains on the 
same four-dimensional "surface." The surface is attracting for small dis- 
placements in the x direction and neutrally stable with respect to displace- 
ments in the y direction. 
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The system defined by Eqs. (20)-(25) can be derived from a quadratic 
system of the form given in Eqs. (5) and (6) by retaining five modes, assuming 
that A4 and Ao are heavily damped (-~o4 * >> 1 and -~oo * >> 1), and making 
suitable choices for the rm~. 

4. CONCLUSION 

A connection has been established between the conservative nonlinear 
oscillators studied by Ford and Lunsford (1~ and the dissipative nonlinear 
coupled mode equations investigated by Sherman and McLaughlin. (a~ A 
model has been constructed in which one may go continuously from a 
conservative system to a dissipative system in such a way that the constants 
of  the motion are preserved. On the energy surface, the dissipative terms cancel 
out identically, so that the motion reduces to that studied by Ford and 
Lunsford. (1~ Thus, the only effect of  the dissipation is to make the energy 
surface an attractor. On the other hand, if the coefficients of  the dissipative 
terms differ slightly from the values determined in Eqs. (20)-(25), the two 
energies are no longer conserved. I t  seems likely that a finite threshold for 
stochasticity will be produced in this case. Chirikov (5~ has recently found 
similar behavior in his work on slightly dissipative mappings. 
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